Tabla de contenido:

Linus Pauling, científico estadounidense
Linus Pauling, científico estadounidense

Linus Pauling: the only person to win two Nobel Prizes | EsteticaMedica.info (Mayo 2024)

Linus Pauling: the only person to win two Nobel Prizes | EsteticaMedica.info (Mayo 2024)
Anonim

Linus Pauling, en su totalidad Linus Carl Pauling, (nacido el 28 de febrero de 1901, Portland, Oregon, EE. UU., Fallecido el 19 de agosto de 1994, Big Sur, California), químico físico teórico estadounidense que se convirtió en la única persona que ganó dos premios Nobel sin compartir. Su primer premio (1954) fue otorgado por la investigación sobre la naturaleza del enlace químico y su uso para dilucidar la estructura molecular; el segundo (1962) reconoció sus esfuerzos por prohibir las pruebas de armas nucleares.

Temprana edad y educación

Pauling fue el primero de tres hijos y el único hijo de Herman Pauling, un farmacéutico, y Lucy Isabelle (Darling) Pauling, la hija de un farmacéutico. Después de su educación temprana en Condon y Portland, Oregon, asistió a Oregon Agricultural College (ahora Oregon State University), donde conoció a Ava Helen Miller, quien más tarde se convertiría en su esposa, y donde recibió su licenciatura en ingeniería química summa cum laude en 1922. Luego asistió al Instituto de Tecnología de California (Caltech), donde Roscoe G. Dickinson le mostró cómo determinar las estructuras de los cristales usando rayos X. Recibió su Ph.D. en 1925 para una disertación derivada de sus documentos de estructura cristalina. Después de un breve período como investigador nacional, recibió una beca Guggenheim para estudiar mecánica cuántica en Europa.Pasó la mayor parte de los 18 meses en el Instituto de Física Teórica de Arnold Sommerfeld en Munich, Alemania.

Elucidación de estructuras moleculares.

Después de completar los estudios posdoctorales, Pauling regresó a Caltech en 1927. Allí comenzó una larga carrera de enseñanza e investigación. El análisis de la estructura química se convirtió en el tema central de su trabajo científico. Al utilizar la técnica de difracción de rayos X, determinó la disposición tridimensional de los átomos en varios minerales importantes de silicato y sulfuro. En 1930, durante un viaje a Alemania, Pauling se enteró de la difracción de electrones y, a su regreso a California, utilizó esta técnica de dispersión de electrones del núcleo de las moléculas para determinar las estructuras de algunas sustancias importantes. Este conocimiento estructural lo ayudó a desarrollar una escala de electronegatividad en la que asignó un número que representa el poder de un átomo particular de atraer electrones en un enlace covalente.

To complement the experimental tool that X-ray analysis provided for exploring molecular structure, Pauling turned to quantum mechanics as a theoretical tool. For example, he used quantum mechanics to determine the equivalent strength in each of the four bonds surrounding the carbon atom. He developed a valence bond theory in which he proposed that a molecule could be described by an intermediate structure that was a resonance combination (or hybrid) of other structures. His book The Nature of the Chemical Bond, and the Structure of Molecules and Crystals (1939) provided a unified summary of his vision of structural chemistry.

The arrival of the geneticist Thomas Hunt Morgan at Caltech in the late 1920s stimulated Pauling’s interest in biological molecules, and by the mid-1930s he was performing successful magnetic studies on the protein hemoglobin. He developed further interests in protein and, together with biochemist Alfred Mirsky, Pauling published a paper in 1936 on general protein structure. In this work the authors explained that protein molecules naturally coiled into specific configurations but became “denatured” (uncoiled) and assumed some random form once certain weak bonds were broken.

On one of his trips to visit Mirsky in New York, Pauling met Karl Landsteiner, the discoverer of blood types, who became his guide into the field of immunochemistry. Pauling was fascinated by the specificity of antibody-antigen reactions, and he later developed a theory that accounted for this specificity through a unique folding of the antibody’s polypeptide chain. World War II interrupted this theoretical work, and Pauling’s focus shifted to more practical problems, including the preparation of an artificial substitute for blood serum useful to wounded soldiers and an oxygen detector useful in submarines and airplanes. J. Robert Oppenheimer asked Pauling to head the chemistry section of the Manhattan Project, but his suffering from glomerulonephritis (inflammation of the glomerular region of the kidney) prevented him from accepting this offer. For his outstanding services during the war, Pauling was later awarded the Presidential Medal for Merit.

While collaborating on a report about postwar American science, Pauling became interested in the study of sickle-cell anemia. He perceived that the sickling of cells noted in this disease might be caused by a genetic mutation in the globin portion of the blood cell’s hemoglobin. In 1949 he and his coworkers published a paper identifying the particular defect in hemoglobin’s structure that was responsible for sickle-cell anemia, which thereby made this disorder the first “molecular disease” to be discovered. At that time, Pauling’s article on the periodic law appeared in the 14th edition of Encyclopædia.

While serving as a visiting professor at the University of Oxford in 1948, Pauling returned to a problem that had intrigued him in the late 1930s—the three-dimensional structure of proteins. By folding a paper on which he had drawn a chain of linked amino acids, he discovered a cylindrical coil-like configuration, later called the alpha helix. The most significant aspect of Pauling’s structure was its determination of the number of amino acids per turn of the helix. During this same period he became interested in deoxyribonucleic acid (DNA), and early in 1953 he and protein crystallographer Robert Corey published their version of DNA’s structure, three strands twisted around each other in ropelike fashion. Shortly thereafter James Watson and Francis Crick published DNA’s correct structure, a double helix. Pauling’s efforts to modify his postulated structure had been hampered by poor X-ray photographs of DNA and by his lack of understanding of this molecule’s wet and dry forms. In 1952 he failed to visit Rosalind Franklin, working in Maurice Wilkins’s laboratory at King’s College, London, and consequently did not see her X-ray pictures of DNA. Frankin’s pictures proved to be the linchpin in allowing Watson and Crick to elucidate the actual structure. Nevertheless, Pauling was awarded the 1954 Nobel Prize for Chemistry “for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances.”